Skip to main content
Log in

Molecular mechanisms mediating involvement of glial cells in brain plastic remodeling in epilepsy

  • Review
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

In this review we summarize published data on the involvement of glial cells in molecular mechanisms underlying brain plastic reorganization in epilepsy. The role of astrocytes as glial elements in pathological plasticity in epilepsy is discussed. Data on the involvement of aquaporin-4 in epileptogenic plastic changes and on participation of microglia and extracellular matrix in dysregulation of synaptic transmission and plastic remodeling in epileptic brain tissue are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADAMTS:

a disintegrin and metalloprotease with thrombospondin motifs

AMPA:

α-amino-3-hydroxy-5methyl-4-isoxazolepropionic acid

AQP:

aquaporins

AQP4:

aquaporin-4 receptor

BDNF:

brain-derived neurotrophic factor

CNS:

central nervous system

CSPGs:

chondroitin sulphate proteoglycans

ECM:

extracellular matrix

ECS:

extracellular space

EPSP:

excitatory postsynaptic potential

GABA:

gamma-aminobutyric acid

HAPLN1:

hyaluronan and proteoglycan link protein 1

LPS:

lipopolysaccharide

LTD:

longterm depression

LTP:

long-term potentiation

mGluRs:

metabotropic glutamate receptors

ММР:

matrix metalloproteases

NMDA:

N-methyl-D-aspartate

PDS:

paroxysmal depolarization shift

PNN:

perineuronal net

PV+ :

parvalbumin-positive inhibitory interneurons

SE:

status epilepticus

SIC:

slow inward currents

TLR4:

toll-like receptor 4

tPA:

tissue plasminogen activator

References

  1. Ransom, B., Behar, T., and Nedergaard, M. (2003) New roles for astrocytes (stars at last), Trends Neurosci., 26, 520–522.

    Article  CAS  PubMed  Google Scholar 

  2. Halassa, M. M., and Haydon, P. G. (2010) Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior, Annu. Rev. Physiol., 72, 335–355.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. De Lanerolle, N. C., and Lee, T. (2005) New facets of the neuropathology and molecular profile of human temporal lobe epilepsy, Epilepsy Behav., 7, 190–203.

    Article  PubMed  Google Scholar 

  4. Tian, G. F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X., Zielke, H. R., Kang, J., and Nedergaard, M. (2005) An astrocytic basis of epilepsy, Nat. Med., 11, 973–981.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Binder, D. K., and Carson, M. J. (2013) Glial cells as primary therapeutic targets for epilepsy, Neurochem. Int., 63, 635–637.

    Article  CAS  PubMed  Google Scholar 

  6. Meldrum, B. S. (1992) Excitatory amino acids in epilepsy and potential novel therapies, Epilepsy Res., 12, 189–196.

    Article  CAS  PubMed  Google Scholar 

  7. Khazipov, R., Valeeva, G., and Khalilov, I. (2015) Depolarizing GABA and developmental epilepsies, CNS Neurosci. Ther., 21, 83–91.

    Article  CAS  PubMed  Google Scholar 

  8. Bonansco, C., and Fuenzalida, M. (2016) Plasticity of hippocampal excitatory-inhibitory balance: missing the synaptic control in the epileptic brain, Neural Plast., 28607038.

    Google Scholar 

  9. Pascual, O., Ben Achour, S., Rostaing, P., Triller, A., and Bessis, A. (2012) Microglia activation triggers astrocytemediated modulation of excitatory neurotransmission, Proc. Natl. Acad. Sci. USA, 109, E197–E205.

    Article  CAS  PubMed  Google Scholar 

  10. Tang, F.-R., and Lee, W.-L. (2001) Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy, J. Neurocytol., 30, 137–143.

    Article  CAS  PubMed  Google Scholar 

  11. Steinhauser, C., and Seifert, G. (2002) Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity, Eur. J. Pharmacol., 447, 227–237.

    Article  CAS  PubMed  Google Scholar 

  12. Nagaraja, R. Y., Becker, A., Reymann, K. G., and Balschun, D. (2005) Repeated administration of group I mGluR antagonists prevents seizure-induced long-term aberrations in hippocampal synaptic plasticity, Neuropharmacology, 49, Suppl. 1, 179–187.

    Article  CAS  PubMed  Google Scholar 

  13. Carmignoto, G., and Fellin, T. (2006) Glutamate release from astrocytes as a non-synaptic mechanism for neuronal synchronization in the hippocampus, J. Physiol. Paris, 99, 98–102.

    Article  CAS  PubMed  Google Scholar 

  14. Alvarez-Ferradas, C., Morales, J. C., Wellmann, M., Nualart, F., Roncagliolo, M., Fuenzalida, M., and Bonansco, C. (2015) Enhanced astroglial Ca2+ signaling increases excitatory synaptic strength in the epileptic brain, Glia, 63, 1507–1521.

    Article  PubMed  Google Scholar 

  15. Fellin, T., Gomez-Gonzalo, M., Gobbo, S., Carmignoto, G., and Haydon, P. G. (2006) Astrocytic glutamate is not necessary for the generation of epileptiform neuronal activity in hippocampal slices, J. Neurosci., 26, 9312–9322.

    Article  CAS  PubMed  Google Scholar 

  16. Navarrete, M., and Araque, A. (2008) Endocannabinoids mediate neuron–astrocyte communication, Neuron, 57, 883–893.

    Article  CAS  PubMed  Google Scholar 

  17. Coiret, G., Ster, J., Grewe, B., Wendling, F., Helmchen, F., Gerber, U., and Benquet, P. (2012) Neuron to astrocyte communication via cannabinoid receptors is necessary for sustained epileptiform activity in rat hippocampus, PLoS One, 7, e37320.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Mariotti, L., Losi, G., Sessolo, M., Marcon, I., and Carmignoto, G. (2016) The inhibitory neurotransmitter GABA evokes long-lasting Ca2+ oscillations in cortical astrocytes, Glia, 64, 363–373.

    Article  PubMed  Google Scholar 

  19. Kogo, N., Dalezios, Y., Capogna, M., Ferraguti, F., Shigemoto, R., and Somogyi, P. (2004) Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat, Eur. J. Neurosci., 19, 2727–2740.

    Article  PubMed  Google Scholar 

  20. Somogyi, P., Dalezios, Y., Lujan, R., Roberts, J. D. B., Watanabe, M., and Shigemoto, R. (2003) High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus, Eur. J. Neurosci., 17, 2503–2520.

    Article  PubMed  Google Scholar 

  21. Lalo, U., Palygin, O., Rasooli-Nejad, S., Andrew, J., Haydon, P. G., and Pankratov, Y. (2014) Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex, PLoS Biol., 12, e1001747.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ahumada, J., Fernandez de Sevilla, D., Couve, A., Buno, W., and Fuenzalida, M. (2013) Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors, Hippocampus, 23, 1439–1452.

    Article  CAS  PubMed  Google Scholar 

  23. Wetherington, J., Serrano, G., and Dingledine, R. (2008) Astrocytes in the epileptic brain, Neuron, 58, 168–178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Haglund, M. M., and Hochman, D. W. (2005) Furosemide and mannitol suppression of epileptic activity in the human brain, J. Neurophysiol., 94, 907–918.

    Article  CAS  PubMed  Google Scholar 

  25. Maa, E. H., Kahle, K. T., Walcott, B. P., Spitz, M. C., and Staley, K. J. (2011) Diuretics and epilepsy: will the past and present meet? Epilepsia, 52, 1559–1569.

    Article  CAS  PubMed  Google Scholar 

  26. Feng, Z., and Durand, D. M. (2006) Effects of potassium concentration on firing patterns of low-calcium epileptiform activity in anesthetized rat hippocampus: inducing of persistent spike activity, Epilepsia, 47, 727–736.

    Article  CAS  PubMed  Google Scholar 

  27. Verkman, A. S. (2002) Physiological importance of aquaporin water channels, Ann. Med., 34, 192–200.

    Article  CAS  PubMed  Google Scholar 

  28. Nagelhus, E. A., Mathiisen, T. M., and Ottersen, O. P. (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1, Neuroscience, 129, 905–913.

    Article  CAS  PubMed  Google Scholar 

  29. Niermann, H., Amiry-Moghaddam, M., Holthoff, K., Witte, O. W., and Ottersen, O. P. (2001) A novel role of vasopressin in the brain: modulation of activity dependent water flux in the neocortex, J. Neurosci., 21, 3045–3051.

    CAS  PubMed  Google Scholar 

  30. Wolburg, H., Wolburg-Buchholz, K., Fallier-Becker, P., Noell, S., and Mack, A. F. (2011) Structure and functions of aquaporin-4-based orthogonal arrays of particles, Int. Rev. Cell. Mol. Biol., 287, 1–41.

    Article  CAS  PubMed  Google Scholar 

  31. Hsu, M. S., Seldin, M., Lee, D. J., Seifert, G., Steinhauser, C., and Binder, D. K. (2011) Laminar-specific and developmental expression of aquaporin-4 in the mouse hippocampus, Neuroscience, 178, 21–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Binder, D. K., Nagelhus, E. A., and Ottersen, O. P. (2012) Aquaporin-4 and epilepsy, Glia, 60, 1203–1214.

    Article  PubMed  Google Scholar 

  33. Scharfman, H. E., and Binder, D. R. (2013) Aquaporin-4 water channels and synaptic plasticity in the hippocampus, Neurochem. Int., 63, 702–711.

    Article  CAS  PubMed  Google Scholar 

  34. Chin, J., and Scharfman, H. E. (2013) Shared cognitive and behavioral impairments in epilepsy and Alzheimer’s disease and potential underlying mechanisms, Epilepsy Behav., 26, 343–351.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Szu, J. I., and Binder, D. K. (2016) The role of astrocytic aquaporin-4 in synaptic plasticity and learning and memory, Front. Integrat. Neurosci., 10, Art.8.

  36. Binder, D. K., Yao, X., Sick, T. J., Verkman, A. S., and Manley, G. T. (2006) Increased seizure duration and slowed potassium kinetics in mice lacking aquaporin-4 water channels, Glia, 53, 631–636.

    Article  PubMed  Google Scholar 

  37. Baalman, K., Marin, M. A., Ho, T. S., Godoy, M., Cherian, L., Robertson, C., and Rasband, M. N. (2015) Axon initial segment-associated microglia, J. Neurosci., 35, 2283–2292.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Ahlers, K. E., Karacay, B., Fuller, L., Bonthius, D. J., and Dailey, M. E. (2015) Transient activation of microglia following acute alcohol exposure in developing mouse neocortex is primarily driven by BAX-dependent neurodegeneration, Glia, 63, 1694–1713.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J. E., Sekino, Y., and Sato, K. (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone, J. Neurosci., 34, 2231–2243.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Arno, B., Grassivaro, F., Rossi, C., Bergamaschi, A., Castiglioni, V., Furlan, R., Greter, M., Favaro, R., Comi, G., Becher, B., Martino, G., and Muzio, L. (2014) Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex, Nat. Commun., 5, 5611.

    Article  CAS  PubMed  Google Scholar 

  41. Sipe, G. O., Lowery, R. L., Tremblay, M. E., Kelly, E. A., Lamantia, C. E., and Majewska, A. K. (2016) Microglial P2Y12 is necessary for synaptic plasticity in mouse visual cortex, Nat. Commun., 7, 10905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Eyo, U. B., Murugan, M., and Wu, L.-J. (2016) Microglia–neuron communication in epilepsy, Glia, in press, doi: 10.1002/glia.23006.

    Google Scholar 

  43. Boer, K., Spliet, W. G., Van Rijen, P. C., Redeker, S., Troost, D., and Aronica, E. (2006) Evidence of activated microglia in focal cortical dysplasia, J. Neuroimmunol., 173, 188–195.

    Article  CAS  PubMed  Google Scholar 

  44. Avignone, E., Lepleux, M., Angibaud, J., and Nagerl, U. V. (2015) Altered morphological dynamics of activated microglia after induction of status epilepticus, J. Neuroinflamm., 12, 202.

    Article  Google Scholar 

  45. Eyo, U. B., Peng, J., Swiatkowski, P., Mukherjee, A., Bispo, A., and Wu, L. J. (2014) Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus, J. Neurosci., 34, 10528–10540.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Jung, K. H., Chu, K., Lee, S. T., Kim, J. H., Kang, K. M., Song, E. C., Kim, S. J., Park, H. K., Kim, M., Lee, S. K., and Roh, J. K. (2009) Region-specific plasticity in the epileptic rat brain: a hippocampal and extrahippocampal analysis, Epilepsia, 50, 537–549.

    Article  CAS  PubMed  Google Scholar 

  47. Eyo, U. B., Gu, N., De, S., Dong, H., Richardson, J. R., and Wu, L. J. (2015) Modulation of microglial process convergence toward neuronal dendrites by extracellular calcium, J. Neurosci., 35, 2417–2422.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hickman, S. E., Kingery, N. D., Ohsumi, T. K., Borowsky, M. L., Wang L. C., Means, T. K., and El Khoury, J. (2013) The microglial sensome revealed by direct RNA sequencing, Nat. Neurosci., 16, 1896–1905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Elmore, M. R., Najafi, A. R., Koike, M. A., Dagher, N. N., Spangenberg, E. E., Rice, R. A., Kitazawa, M., Matusow, B., Nguyen, H., West, B. L., and Green, K. N. (2014) Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain, Neuron, 82, 380–397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Ali, I., Chugh, D., and Ekdahl, C. T. (2015) Role of fractalkine-CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain, Neurobiol. Dis., 74, 194–203.

    Article  CAS  PubMed  Google Scholar 

  51. Banerjee, M., Sasse, V. A., Wang, Y., Maulik, M., and Kar, S. (2015) Increased levels and activity of cathepsins B and D in kainate-induced toxicity, Neuroscience, 284, 360–373.

    Article  CAS  PubMed  Google Scholar 

  52. Lauro, C., Catalano, M., Trettel, F., and Limatola, C. (2015) Fractalkine in the nervous system: neuroprotective or neurotoxic molecule? Ann. N. Y. Acad. Sci., 1351, 141–148.

    Article  CAS  PubMed  Google Scholar 

  53. Hoshiko, M., Arnoux, I., Avignone, E., Yamamoto, N., and Audinat, E. (2012) Deficiency of the microglial receptor CX3CR1 impairs postnatal functional development of thalamocortical synapses in the barrel cortex, J. Neurosci., 32, 15106–15111.

    Article  CAS  PubMed  Google Scholar 

  54. Paolicelli, R. C., Bolasco, G., Pagani, F., Maggi, L., Scianni, M., Panzanelli, P., Giustetto, M., Ferreira, T. A., Guiducci, E., Dumas, L., Ragozzino, D., and Gross, C. T. (2011) Synaptic pruning by microglia is necessary for normal brain development, Science, 333, 1456–1458.

    Article  CAS  PubMed  Google Scholar 

  55. Rogers, J. T., Morganti, J. M., Bachstetter, A. D., Hudson, C. E., Peters, M. M., Grimmig, B. A., Weeber, E. J., Bickford, P. C., and Gemma, C. (2011) CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity, J. Neurosci., 31, 16241–16250.

    Article  CAS  PubMed  Google Scholar 

  56. Roumier, A., Bechade, C., Poncer, J. C., Smalla, K. H., Tomasello, E., Vivier, E., Gundelfinger, E. D., Triller, A., and Bessis, A. (2004) Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse, J. Neurosci., 24, 11421–11428.

    Article  CAS  PubMed  Google Scholar 

  57. Hayashi, Y., Ishibashi, H., Hashimoto, K., and Nakanishi, H. (2006) Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors, Glia, 53, 660–668.

    Article  PubMed  Google Scholar 

  58. Rodgers, K. M., Hutchinson, M. R., Northcutt, A., Maier, S. F., Watkins, L. R., and Barth, D. S. (2009) The cortical innate immune response increases local neuronal excitability leading to seizures, Brain, 132, 2478–2486.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Zhang, J., Malik, A., Choi, H. B., Ko, R. W., DissingOlesen, L., and MacVicar, B. A. (2014) Microglial CR3 activation triggers long-term synaptic depression in the hippocampus via NADPH oxidase, Neuron, 82, 195–207.

    Article  CAS  PubMed  Google Scholar 

  60. Li, Y., Du, X. F., Liu, C. S., Wen, Z. L., and Du, J. L. (2012) Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo, Dev. Cell, 23, 1189–1202.

    Article  CAS  PubMed  Google Scholar 

  61. Dityatev, A., and Fellin, T. (2008) Extracellular matrix in plasticity and epileptogenesis, Neuron Glia Biol., 4, 235–247.

    Article  PubMed  Google Scholar 

  62. Novak, U., and Kaye, A. H. (2000) Extracellular matrix and the brain: components and function, J. Clin. Neurosci., 7, 280–290.

    Article  CAS  PubMed  Google Scholar 

  63. Dansie, L. E., and Ethell, I. M. (2011) Casting a net on dendritic spines: the extracellular matrix and its receptors, Dev. Neurobiol., 71, 956–981.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Mataga, N., Mizuguchi, Y., and Hensch, T. K. (2004) Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator, Neuron, 44, 1031–1041.

    Article  CAS  PubMed  Google Scholar 

  65. Wintergerst, E. S., Faissner, A., and Celio, M. R. (1996) The proteoglycan DSD-1-PG occurs in perineuronal nets around parvalbumin-immunoreactive interneurons of the rat cerebral cortex, Int. J. Dev. Neurosci., 14, 249–255.

    Article  CAS  PubMed  Google Scholar 

  66. Wang, D., and Fawcett, J. (2012) The perineuronal net and the control of CNS plasticity, Cell Tissue Res., 349, 147–160.

    Article  PubMed  Google Scholar 

  67. Pyka, M., Wetzel, C., Aguado, A., Geissler, M., Hatt, H., and Faissner, A. (2011) Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons, Eur. J. Neurosci., 33, 2187–2202.

    Article  PubMed  Google Scholar 

  68. Bradbury, E. J., Moon, L. D., Popat, R. J., King, V. R., Bennett, G. S., Patel, P. N., Fawcett, J. W., and McMahon, S. B. (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury, Nature, 416, 636–640.

    Article  CAS  PubMed  Google Scholar 

  69. Hensch, T. K. (2005) Critical period plasticity in local cortical circuits, Nat. Rev. Neurosci., 6, 877–888.

    Article  CAS  PubMed  Google Scholar 

  70. Carulli, D., Pizzorusso, T., Kwok, J. C., Putignano, E., Poli, A., Forostyak, S., Andrews, M. R., Deepa, S. S., Glant, T. T., and Fawcett, J. W. (2010) Animals lacking link protein have attenuated perineuronal nets and persistent plasticity, Brain, 133, 2331–2347.

    Article  PubMed  Google Scholar 

  71. Gogolla, N., Caroni, P., Luthi, A., and Herry, C. (2009) Perineuronal nets protect fear memories from erasure, Science, 325, 1258–1261.

    Article  CAS  PubMed  Google Scholar 

  72. Suzuki, F., Makiura, Y., Guilhem, D., Sorensen, J. C., and Onteniente, B. (1997) Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice, Exp. Neurol., 145, 203–213.

    Article  CAS  PubMed  Google Scholar 

  73. McRae, P. A., and Porter, B. E. (2012) The perineuronal net component of the extracellular matrix in plasticity and epilepsy, Neurochem. Int., 61, 963–972.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Garwood, J., Rigato, F., Heck, N., and Faissner, A. (2001) Tenascin glycoproteins and the complementary ligand DSD-1-PG/phosphacan-structuring the neural extracellular matrix during development and repair, Restor. Neurol. Neurosci., 19, 51–64.

    CAS  PubMed  Google Scholar 

  75. Faissner, A., Heck, N., Dobbertin, A., and Garwood, J. (2006) DSD-1-proteoglycan/phosphacan and receptor protein tyrosine phosphatase-beta isoforms during development and regeneration of neural tissues, Adv. Exp. Med. Biol., 557, 25–53.

    Article  CAS  PubMed  Google Scholar 

  76. Okamoto, M., Sakiyama, J., Mori, S., Kurazono, S., Usui, S., Hasegawa, M., and Oohira, A. (2003) Kainic acidinduced convulsions cause prolonged changes in the chondroitin sulfate proteoglycans neurocan and phosphacan in the limbic structures, Exp. Neurol., 184, 179–195.

    Article  CAS  PubMed  Google Scholar 

  77. Heck, N., Garwood, J., Loeffler, J. P., Larmet, Y., and Faissner, A. (2004) Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy, Neuroscience, 129, 309–324.

    Article  CAS  PubMed  Google Scholar 

  78. Kurazono, S., Okamoto, M., Sakiyama, J., Mori, S., Nakata, Y., Fukuoka, J., Amano, S., Oohira, A., and Matsui, H. (2001) Expression of brain specific chondroitin sulfate proteoglycans, neurocan and phosphacan, in the developing and adult hippocampus of Ihara’s epileptic rats, Brain Res., 898, 36–48.

    Article  CAS  PubMed  Google Scholar 

  79. McRae, P. A., Baranov, E., Rogers, S. L., and Porter, B. E. (2012) Persistent decrease in multiple components of the perineuronal net following status epilepticus, Eur. J. Neurosci., 36, 3471–3482.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Rankin-Gee, E. K., McRae, P. A., Baranov, E., Rogers, S., Wandrey, L., and Porter, B. E. (2015) Perineuronal net degradation in epilepsy, Epilepsia, 56, 1124–1133.

    Article  CAS  PubMed  Google Scholar 

  81. Yuan, W., Matthews, R. T., Sandy, J. D., and Gottschall, P. E. (2002) Association between protease-specific proteolytic cleavage of brevican and synaptic loss in the dentate gyrus of kainate-treated rats, Neuroscience, 114, 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  82. Yepes, M., Sandkvist, M., Coleman, T. A., Moore, E., Wu, J. Y., Mitola, D., Bugge, T. H., and Lawrence, D. A. (2002) Regulation of seizure spreading by neuroserpin and tissuetype plasminogen activator is plasminogen-independent, J. Clin. Invest., 109, 1571–1578.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Achuta, V. S., Rezov, V., Uutela, M., Louhivuori, V., Louhivuori, L., and Castren, M. L. (2014) Tissue plasminogen activator contributes to alterations of neuronal migration and activity-dependent responses in fragile X mice, J. Neurosci., 34, 1916–1923.

    Article  CAS  PubMed  Google Scholar 

  84. Kurshan, P. T., Phan, A. Q., Wang, G. J., Crane, M. M., Lu, H., and Shen, K. (2014) Regulation of synaptic extracellular matrix composition is critical for proper synapse morphology, J. Neurosci., 34, 12678–12689.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Takacs, E., Nyilas, R., Szepesi, Z., Baracskay, P., Karlsen, B., Rosvold, T., Bjorkum, A. A., Czurko, A., Kovacs, Z., Kekesi, A. K., and Juhasz, G. (2010) Matrix metalloproteinase-9 activity increased by two different types of epileptic seizures that do not induce neuronal death: a possible role in homeostatic synaptic plasticity, Neurochem. Int., 56, 799–809.

    Article  CAS  PubMed  Google Scholar 

  86. Pitkanen, A., Ndode-Ekane, X. E., Lukasiuk, K., Wilczynski, G. M., Dityatev, A., Walker, M. C., Chabrol, E., Dedeurwaerdere, S., Vazquez, N., and Powell, E. M. (2014) Neural ECM and epilepsy, Prog. Brain Res., 214, 229–262.

    Article  PubMed  Google Scholar 

  87. Iyer, A. M., Zurolo, E., Boer, K., Baayen, J. C., Giangaspero, F., Arcella, A., Di Gennaro, G. C., Esposito, V., Spliet, W. G., Van Rijen, P. C., Troost, D., Gorter, J. A., and Aronica, E. (2010) Tissue plasminogen activator and urokinase plasminogen activator in human epileptogenic pathologies, Neuroscience, 167, 929–945.

    Article  CAS  PubMed  Google Scholar 

  88. Lahtinen, L., Huusko, N., Myohanen, H., Lehtivarjo, A. K., Pellinen, R., Turunen, M. P., Yla-Herttuala, S., Pirinen, E., and Pitkanen, A. (2009) Expression of urokinase-type plasminogen activator receptor is increased during epileptogenesis in the rat hippocampus, Neuroscience, 163, 316–328.

    Article  CAS  PubMed  Google Scholar 

  89. Kopjas, N. N., Jones, R. T., Bany, B., and Patrylo, P. R. (2006) Reeler mutant mice exhibit seizures during recovery from isoflurane-induced anesthesia, Epilepsy Res., 69, 87–91.

    Article  CAS  PubMed  Google Scholar 

  90. Slaker, M., Chuchill, L., Todd, R. P., Blacktop, J. M., Zuloaga, D. G., Raber, J., Darling, R. A., Brown, T. E., and Sorg, B. A. (2015) Removal of perineuronal nets in the medial prefrontal cortex impairs the acquisition and reconsolidation of a cocaine-induced conditioned place preference memory, J. Neurosci., 35, 4190–4202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Geissler, M., Gottschling, C., Aguado, A., Rauch, U., Wetzel, C. H., Hatt, H., and Faissner, A. (2013) Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation, J. Neurosci., 33, 7742–7755.

    Article  CAS  PubMed  Google Scholar 

  92. Schousboe, A., Madsen, K. K., Barker-Haliski, M. L., and White, H. S. (2014) The GABA synapse as a target for antiepileptic drugs: a historical overview focused on GABA transporters, Neurochem. Res., 39, 1980–1987.

    Article  CAS  PubMed  Google Scholar 

  93. Fries, P., Nikolic, D., and Singer, W. (2007) The gamma cycle, Trends Neurosci., 30, 309–316.

    Article  CAS  PubMed  Google Scholar 

  94. Ma, Y., and Prince, D. A. (2012) Functional alterations in GABAergic fast-spiking interneurons in chronically injured epileptogenic neocortex, Neurobiol. Dis., 47, 102–113.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Sessolo, M., Marcon, I., Bovetti, S., Losi, G., Cammarota, M., Ratto, G. M., Fellin, T., and Carmignoto, G. (2015) Parvalbumin-positive inhibitory interneurons oppose propagation but favor generation of focal epileptiform activity, J. Neurosci., 35, 9544–9557.

    Article  CAS  PubMed  Google Scholar 

  96. Shiri, Z., Manseau, F., Levesque, M., Williams, S., and Avoli, M. (2015) Interneuron activity leads to initiation of low-voltage fast-onset seizures, Ann. Neurol., 77, 541–546.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Saghatelyan, A. K., Nikonenko, A. G., Sun, M., Rolf, B., Putthoff, P., Kutsche, M., Bartsch, U., Dityatev, A., and Schachner, M. (2004) Reduced GABAergic transmission and number of hippocampal perisomatic inhibitory synapses in juvenile mice deficient in the neural cell adhesion molecule L1, Mol. Cell. Neurosci., 26, 191–203.

    Article  CAS  PubMed  Google Scholar 

  98. Hoffmann, K., Sivukhina, E., Potschka, H., Schachner, M., Loscher, W., and Dityatev, A. (2009) Retarded kindling progression in mice deficient in the extracellular matrix glycoprotein tenascin-R, Epilepsia, 50, 859–869.

    Article  CAS  PubMed  Google Scholar 

  99. Kim, S. Y., Porter, B. E., Friedman, A., and Kaufer, D. (2016) A potential role for glia-derived extracellular matrix remodeling in postinjury epilepsy, J. Neurosci. Res., 94, 794–803.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Khaspekov.

Additional information

Original Russian Text © L. G. Khaspekov, L. E. Frumkina, 2017, published in Biokhimiya, 2017, Vol. 82, No. 3, pp. 528-541.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaspekov, L.G., Frumkina, L.E. Molecular mechanisms mediating involvement of glial cells in brain plastic remodeling in epilepsy. Biochemistry Moscow 82, 380–391 (2017). https://doi.org/10.1134/S0006297917030178

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297917030178

Keywords

Navigation